Accelerating weather
models with PGI compilers

The Portland Group
WWW . pgroup . com

dave.norton@pgroup.com

PGl

http://www.pgroup.com/

CUDA Fortran in 3 slides

CUDA Fortran VADD Host Code

subroutine vadd(A, B, C)

use

use kmod

real, dimension(:) :: A, B

real, , dimension(:) :: C

real, , allocatable:: Ad(:), Bd(:), Cd(:)
integer :: N

N = size(A, 1)

end subroutine

CUDA Fortran VADD Device Code

module kmod

contains
attributes () subroutine vaddkernel (A,B,C,N)
real, device :: A(N), B(N), C(N)
integer, :: N
integer :: 1
i= (-1)*32 +

if(1 <= N) C(1) = A(1) + B(I)
end subroutine
end module

Building a CUDA Fortran Program

= CUDA Fortran is supported by the PGI Fortran compilers when the filename
uses a CUDA Fortran extension. The extension specifies that the file is a
free-format CUDA Fortran program;

= The extension may also be used, in which case the program is
processed by the preprocessor before being compiled.

= To compile a fixed-format program, add the command line option

= CUDA Fortran extensions can be enabled in any Fortran source file by
adding the command line option.

= Most F2003 features should work in CUDA Fortran.

= Thereisa (CUDA-like) API to access features
» Streams supported through API rather then language

Accelerator Directives for flat
performance profile codes
in 6 slides

Accelerator VADD Device Code
(two dimensional array example)

module kmod
contains
subroutine vaddkernel (A,B,C)
real :: A(:,:), B(:,:), C(:,:)

C(:,:) =A(:,:) +B (:,:)
<lots of other code to do neat stuff>
<special code to do even neater stuff>

end subroutine
end module

1$acc region clauses can surround many individual
loops and compute kernels. There is no implicit
GPU/CPU data movement within a region

Compiling the subroutine:

PGI$ pgfortran -Minfo=accel -ta=nvidia -c vadd.Fgo

vaddkernel:
5, Generating copyout(c(1:z_b_14,1:z_b_17))
Generating copyin(a(1:z_b_14,1:z_b_17))
Generating copyin(b(1:z_b_14,1:z_b_17))
Generating compute capability 1.0 binary
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
6, Loop is parallelizable
Accelerator kernel generated
6, !$acc do parallel, vector(26) ! blockidx%x threadidx%ox
I$acc do parallel, vector(26) ! blockidx%y threadidx%oy
CC1.0:7registers; 64 shared, 8 constant, o local memory bytes; 100% occupancy
CC1.3: 8registers; 64 shared, 8 constant, o local memory bytes; 100% occupancy
CC 2.0: 15 registers; 8 shared, 72 constant, o local memory bytes; 100% occupancy

Tuning the compute kernel
Accelerator VADD Device Code

module kmod
contains
subroutine vaddkernel (A,B,C) ! We know array size
real :: A(:,:), B(:,:), C(:,:)! dimension(2560,96)
integer :: 1,3

do j = 1,size(A,1)

do i = 1,size (A, 2)
C(j,i) = A(3,1i) + B (3,1)
enddo
enddo

end subroutine
end module

Keeping the data on the GPU

Accelerator VADD Device Code

module kmod
contains
subroutine vaddkernel (A,B,C)
real :: A(:,:), B(:,:), C(:,:)

C(:,:) =A(:,:) +B (:,:)

end subroutine
end module

The !S$reflected clause must be visible to the
caller so it knows to pass pointers to arrays on
the GPU rather then copyin actual array data. |

Compiling the subroutine:

PGI$ pgfortran -Minfo=accel -ta=nvidia -c vadd.Fgo
vaddkernel:
5, Generating reflected(c(:,:))
Generating reflected(b(:,:))
Generating reflected(a(;,:))
6, Generating compute capability 1.0 binary
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
7, Loop is parallelizable
Accelerator kernel generated
7, '$acc do parallel, vector(16) ! blockidx%x threadidx%ox
I$acc do parallel, vector(26) ! blockidx%y threadidx%oy
CC1.0:11registers; 8o shared, 8 constant, o local memory bytes; 66% occupancy
CC1.3:11registers; 8o shared, 8 constant, o local memory bytes; 100% occupancy
CC 2.0: 17 registers; 8 shared, 88 constant, o local memory bytes; 100% occupancy

Allocating/Deallocating GPU Arrays

Accelerator VADD Device Code

subroutine vadd(M,N,C)
use kmod ! Visibility of !Sacc reflected

real, dimension(:,:) :: A, B, C
integer :: N

A=1.0

B=2.0

call vaddkernel (A,B,C)
call kernel2 (A,B,C)
call kernel3 (A,B,C)
call kerneld4d (A,B,C)

end subroutine

12

Using GPU device-resident data
across subroutines

subroutine timestep (Input,Result,M,N) ‘module kmod
I | Make reflected var’s visible Contains
real, dimension(M,N) :: Input,Result !
— subroutine vaddkernel (A,B,C)
integer :: M,N real :: A(:,:),B(:,:),C(:,:)
real, allocatable :: B,C,D ‘ !Sacc reflected (A,B,C)
dimension(:,:) :: B,C,D I$acc region
~!$acc mirror (B,C,D) # C(:,:) =A(:,:) +B (:,:)
allocate(B(M,N) ,C(M,N) ,D(M,N)) 1Sacc end region
— B=2.0 — end subroutine
: !Sacc update device (Input,B) !
call vaddkernel (Input,B,C) ‘ subroutine kernel2 (C,D)
.. real :: C(:,:),D(:,:)
ms) call kernel2 (C,D) mm) !Sacc reflected (C,D)
e !Sacc region
‘ call kernel3 (D,Result) # < compute-intensive loops >
!$Sacc update host (Result) !Sacc end region
— deallocate (B, C,D) e end subroutine

end subroutine C e
end module

% pgfortran -help -ta

-ta=nvidia: {analysis|nofma| [no] flushz | keepbin | keepptx|keepgpu|maxregcount:<n>|
clO|ccll|ccl2|cecl3|cc20| fastmath|mul24|time|cuda2.3|cuda3.0|
cuda3.l|cuda3.2|cudad4.0| [no]wait} |host

Choose target accelerator

nvidia Select NVIDIA accelerator target

analysis Analysis only, no code generation

nofma Don't generate fused mul-add instructions

[no] £flushz Enable flush-to-zero mode on the GPU

keepbin Keep kernel .bin files

keepptx Keep kernel .ptx files

keepgpu Keep kernel source files

maxregcount:<n> Set maximum number of registers to use on the GPU
cclO0 Compile for compute capability 1.0

cc20 Compile for compute capability 2.0

fastmath Use fast math library

mul24 Use 24-bit multiplication for subscripting

time Collect simple timing information

cudaz2.3 Use CUDA 2.3 Toolkit compatibility

cuda4.0 Use CUDA 4.0 Toolkit compatibility

[no]wait Wait for each kernel to finish; overrides nowait clause

host Compile for the host, i.e. no accelerator target

Compute region directive clauses for tuning
data allocation and movement

Clause Meaning

if (condition) Execute on GPU conditionally
copy (list) Copy in and out of GPU memory
copyin (list) Only copy in to GPU memory
copyout (list) Only copy out of GPU memory
local (list) Allocate locally on GPU
deviceptr (list) C pointers in list are device pointers
update device (list) | Update device copies of the arrays
update host (list) Update host copies of the arrays

Loop directive clauses for tuning
GPU kernel schedules

Clause Meaning

parallel [(width)] Parallelize the loop across the multi-
processors

vector [(width)] SIMD vectorize the loop within a multi-
processor

seq [(width)] Execute the loop sequentially on each
thread processor

independent Iterations of this loop are data independent
of each other

unroll (factor) Unroll the loop factor times

cache (list) Try to place these variables in shared
memory

private (list) Allocate a copy of each variable in list for

each loop iteration

Timing / Profiling

How long does my program take to run?
» time ./myprogram

How long do my kernels take to run?

» pgfortran —ta=nvidia,time

Environment variables:

export ACC_NOTIFY=1

export NVDEBUG=1

cuda profiler settings

#export CUDA_PROFILE=1

#export CUDA_PROFILE_CONFIG=cudaprof.cfg
#export CUDA_PROFILE_CSV=1

#export CUDA_PROFILE_LOG=cudaprof.log

Compiler-to-Programmer Feedback
Incremental porting/tuning for GPUs

Directives, Options, RESTRUCTURING
; b T E
HPC > ol
=)
Code ‘ Performance

»
= D) ~ [FesRen
AcCcC

Obstacles to GPU code generation

Loop nests to be offloaded to the GPU must be rectangular

At least some of the loops to be offloaded must be fully data parallel with
no synchronization or dependences across iterations

Computed array indices should be avoided
All function calls must be inlined within loops to be offloaded

In Fortran, the pointer attribute is not supported; pointer arrays may be
specified, but pointer association is not preserved in GPU device memory

In C

= Loops that operate on structs can be offloaded, but those that operate on nested
structs cannot

= Pointers used to access arrays in loops to be offloaded must be declared with Cgg
restrict (or compiled w/-Msafeptr, but it is file scope)

= Pointer arithmetic is not allowed within loops to be offloaded

Evolution of the Directives

Published Version 1.0 of the PGI Accelerator
Directives

= |Intent of publication was to start discussion on
standardization process

Implemented vi.0

Standardization process started through
OMP

Published Version 1.3 of the PGI Accelerator
Directives

Currently implementing va.3

PGl

= C99, C++, F2003 Compilers
= Optimizing
= Vectorizing
= Parallelizing
= Graphical parallel tools
= PGDBG® debugger
= PGPROF® profiler
= AMD, Intel, NVIDIA, ST
= 64-bit / 32-bit
= PGI Unified Binary™
= Linux, MacO0S, Windows
= Visual Studio integration
= GPGPU Features
= CUDA Fortran
= PGI Accelerator™

= CUDA-x86

The Portland Group

Technology Products Services Resources User Forums. Purchase About

PGI 2011

is now available for This
release includes full support fo
Fortran 2003, full support for the
PGl Accelerator Programming Model
significant C++ performance
vements and more. Read

PGl opti %64 compilers MacOS & Windows with

support for de ng of local MPI pr A complete
ig atest Intel and AMD

CUDA i
CUDA Fortran enables GPU acceleration of HPC app ing NVIDIA
CUDA parallel p mming medel in a n 003 compiler.

o™ C99 & Fort
& Fortran enable h programming of HPC applications
rms using OpenMP-like compiler directi P

ntal, and easy to use for appl n domain ex|

The PGl
The PGI CDK includ
debug and pre

Fortran®f
sual Fortran brings optil x64 Fortran with integrated
nMP/MP| debugging to sc : en rs on Microsoft Windows within
sual Studio. M) | T

Optimizing Performance Installation Buying PGl Products

WWW . pgroup.com

Reference Materials

PGI Accelerator programming model
» http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.3.pdf

CUDA Fortran
= http://www.pgroup.com/lit/whitepapers/pgicudaforug.pdf

CUDA-x86

» http://www.pgroup.com/resources/cuda-x86.htm

Understanding the CUDA Threading Model

» http://www.pgroup.com/lit/articles/insider/v2niag.htm

